South Africa Energy Metallurgical Industrial Zone Brief Introduction

Investment opportunity in Africa energy metallurgical
South Africa Energy Metallurgical Industrial Zone Brief Introduction

South Africa Energy Metallurgical Industrial Zone is a national Energy Metallurgical Industrial Zone according to the special economic zones law of South Africa and the legislation through parliament, it enjoys South Africa national special economic zones tax benefits and all preferential treatment of South Africa’s foreign investment policy. South Africa Limpopo Economic Development Agency and South Africa energy metallurgical base company limited proposed to establish a joint venture of South Africa energy metallurgical special industrial zone management limited, to invest, develop and manage the energy metallurgical industrial zone. The industrial zone is located in Musina area of limpopo province in South Africa, the project covers an area of 60 square kilometers, adjacent to Zimbabwe and mozambique border, it is in the mid of 3 large scale open cast coal mines of Coal of Africa company, Universal coal company and BHP Coal company, the region has more than 20 billion tons of coking coal resources. Within 200 km of the industrial zone, rich in iron and steel furnace material mine resources, there are 7 billion tons iron ore, 5 billion tons chrome ore,6 billion tons manganese ore , 6 billion tons of silicon ore, 5 billion tons nickel ore and 20 billion tons of limestone.Inside the industrial zone,there are national railway, highway, power supply network,500 kilometers to maputo large port.Limpopo river is 30 kilometers from the project location, this river is an important water source of industrial zone project.

The industrial zone project will be built 1,320MW thermal power plant, the annual output of 10 million tons of coal washery plant, 1.1 million tons of coking plant, 600,000 tons of ferromanganese plant, 300,000 tons of ferrosilicon plant ,3 million tons of iron plant, 2 million
tons of steel plant, 1 million tons of stainless steel plant, 5 million tons of limestone plant. The industrial zone will be built the government administrative service center (Business administration, customs, taxation, etc.), staff living area service Center (staff dormitory, hotels, shopping malls, etc.) and the highway, railway, shipping comprehensive logistics service center (for the projects of point to point logistics service). Set up a mine resource supply center, provide all kinds of metallurgical furnace materials from mine resources for the industrial zone projects.

The industrial zone project energy metallurgical technology integration advantages, coking coal mining → coal washery → coking plant → power plant → iron alloy plant → iron plant → steel plant (one-stop metallurgy process), ferroalloy water and the iron water hydrothermal send to steel plant for steel making, greatly reducing smelting Energy consumption, the metallurgical vertical process technological superiority and unique in the world. South Africa energy metallurgical special industrial zone management limited provides all the preferential policies and guaranteed competitive resources supplies and supporting service facilities for the metallurgical project investors. The industrial zone has all kinds of metallurgical raw materials mining resources, land, water, power plant, coke chemical plant, sewage treatment plant, comprehensive office building, staff living quarters, shopping malls and other facilities. Energy metallurgical base projects: Ferroalloy plant, iron plant and steel plant, stainless steel plant and so on, openly invite project investors around the world. We sincerely inviting peers friendly visit to South Africa Energy Metallurgical Industry Zone and have a discussion, we hope to cooperate with friends and advantage complement to each other, seek common development and create the world’s most competitive energy metallurgical base.
South Africa Energy Metallurgical Base Project

南非能源冶金基地项目

LEDAs
林波波省投资局

SA Energy Metallurgical Base Limited
南非能源冶金基地公司

SA Energy Metallurgical Special Industrial Zone Management Limited
南非能源冶金工业特区管理有限公司

Project Investor
项目投资者

LEDAs
黑人股东

Service
服务

Land
特区土地

Power Plant and substation
发电厂

Water Plant
水厂

Sewage treatment Plant
污水处理厂

Administration centre
行政中心

Logistics centre
物流中心

Service Facility
服务设施

Coking Plant
焦化厂

Lime Plant
石灰厂

Ferro-chrome Plant
铬铁厂

Ferro-Manganese Plant
锰铁厂

Steel Plant
钢厂

Stainless Steel Plant
不锈钢厂

Pig Iron Plant
生铁厂

Pig Iron Plant
生铁厂

Pig Iron Plant
生铁厂
South Africa Energy Metallurgical Base Project
Preliminary feasibility study report outline summary contents

1. Project data summary table
2. Coking plant -----------------Annual output of 1.1 million tons coke
3. Power plant ------------------1,320MW thermal power plant construction
4. High carbon ferrochrome plant----Annual output of 600,000 tons high carbon ferrochrome
5. Ferromanganese plant -----Annual output of 600,000 tons ferromanganese
6. Ferrosilicon plant --------Annual output of 300,000 tons ferrosilicon
7. Pig iron Metallurgy Plant---Annual output of 2 million tons Pig Iron
8. Steel Plant ------------------Annual output of 3 million tons steel
9. Stainless steel plant -------Annual output of 1 million tons stainless steel
10. Lime plant ------------------Annual output of 5 million tons lime
### SA Energy Metallurgical Industrial Zone Project Investment Data

<table>
<thead>
<tr>
<th>Project Data</th>
<th>Project name</th>
<th>Project investment ($m)</th>
<th>Project land use (hectares)</th>
<th>Water consumption (mM³)</th>
<th>Project workers</th>
<th>Annual production ($m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power Plant</td>
<td>1,000</td>
<td>300</td>
<td>9</td>
<td>800</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Coking Plant</td>
<td>300</td>
<td>500</td>
<td>2.5</td>
<td>1,200</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Ferrochrome Plant</td>
<td>400</td>
<td>500</td>
<td>6</td>
<td>2,600</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Ferromanganese Plant</td>
<td>400</td>
<td>500</td>
<td>6</td>
<td>2,300</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Ferrosilicon Plant</td>
<td>200</td>
<td>300</td>
<td>4</td>
<td>1,800</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Pig Iron Plant</td>
<td>100</td>
<td>600</td>
<td>4</td>
<td>3,000</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>Steel Plant</td>
<td>600</td>
<td>600</td>
<td>3</td>
<td>2,600</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>Stainless Steel Plant</td>
<td>400</td>
<td>500</td>
<td>2</td>
<td>2,000</td>
<td>2,000.00</td>
</tr>
<tr>
<td></td>
<td>Lime Plant</td>
<td>100</td>
<td>500</td>
<td>3</td>
<td>1,500</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Supporting Facilities</td>
<td>300</td>
<td>2,000</td>
<td>5</td>
<td>3,000</td>
<td>180</td>
</tr>
<tr>
<td><strong>Total Project Investment</strong></td>
<td></td>
<td><strong>3,900</strong></td>
<td><strong>6,300</strong></td>
<td><strong>44.5</strong></td>
<td><strong>20,800</strong></td>
<td><strong>5,350.00</strong></td>
</tr>
</tbody>
</table>
南非能源冶金基地
South Africa Energy Metallurgical Base
年产 110 万吨焦炭厂建设项目
Annual output 1.1 million tons coking plant construction project

可行性研究报告
The feasibility study report

香港矿权交易所技术研究院
HK Mining Exchange Company Limited Research Institute of technology
二零一四年五月
May 2014
目录/Contents

1 总 论 Summary
2 市 场 预 测 Market forecast
3 生 产 规 模 及 产 品 方 案 The production scale and products solution
4 工艺技术方案 Technology solutions
5 原料、辅助材料的耗量和供应 Raw materials, auxiliary materials consumption and supply
6 建厂条件和厂址方案 Factory construction conditions and site plan
7 公用工程和辅助设施 Public utilities and auxiliary facilities
8 节能 Energy conservation
9 环境保护 Environmental protection
10 劳动安全 Labour safety
11 消防 Fire control
12 工厂组织及劳动定员 Factory organization and fixed workforce
13 项目实施规划 Project implementation planning
14. 投资估算及资金筹措 The investment estimation and financing

15. 财务效益初步评价 Financial benefit preliminary evaluation
Summary of Coking Plant Project

For the South Africa Energy Metallurgical Base Coking Plant Project ("project"), the investors will comprise of the South Africa Energy Metallurgical Base Limited ("InvestCo") and other investors from the coking industry. The plant can produce 1.1 million tons of metallurgical coking coal per annum. The coking plant ("plant") will be located at the energy metallurgical base of Limpopo Province, with close proximity to the coking coal mines of Universal Coal Plc and Coal of Africa Limited. More than 20 billion tons of open pit coking coal in around the project site.

The size of the land for the plant to be developed will be 500 hectares. 3 million tons of coking coal with net calorific value of 6000Kcal/kg or above per annum will be required which will be sourced from the surrounding coking coal mines. The water will be sourced from the Limpopo river. Water usage will be 2.5 million m³ per annum. Power will be supply by the self-established power plant of the energy metallurgy base. The coking coal will supply mainly to the plants of the energy metallurgical base and other users of the metallurgy industry in South Africa. 1200 workers will be employed from Limpopo for the
Office and living facilities will be provided by the South Africa Metallurgical Industrial Zone Management Limited ("MANCO"). The overall project investment will be $300 millions. The annual production output value at $220 millions. The period for project development is 3 years.
南非能源冶金基地
South Africa Energy Metallurgical Base
132 万千瓦火力发电厂建设项目
1,320 MW thermal power plant construction project

可行性研究报告
The feasibility study report

香港矿权交易所技术研究院
HK Mining Exchange Company Limited Research Institute of technology
二 0 十四年五月
May 2014
目录/Contents

1. 概述 Overview
2. 电力系统 Power System
3. 热负荷 Heat Load
4. 燃料供应 Fuel Supply
5. 工程设想 Engineering Projection
6. 厂址方案与技术经济比较
    Site Plan and Technical Economy Comparison
7. 初步投资估算及财务与风险分析
    Initial Investment Estimates and Financial Risk Analysis
Summary of Thermal Power Plant Project

The project name is South Africa Energy Metallurgical Base Thermal Power Plant Project (“project”), the investors will comprise of the South Africa Metallurgical Special Industrial Zone Management Limited (“MANCO”) and other investors from the power supply industry. The coal-fired power plant will have 1,320 MW power generator (2 sets of 660MW power generator). The power plant (“plant”) will be located at the energy metallurgical base of Limpopo Province, with close proximity to the coking coal mines of Universal Coal Plc and Coal of Africa Limited. More than 20 billion tons of open pit coking coal in around the project site.

The size of the land for the plant to be developed will be 300 hectares. The thermal coal is mainly obtain from the slag after the washing of coking coal. 5 million tons of thermal coal with net calorific value of 5000kCal or above per annum is required which will be sourced from the surrounding coal mines. The water will be sourced from the Limpopo river. Water usage will be 9 million m3 per annum. The plant is a self-established power plant for the energy metallurgical base and will connect to the state grid. The plant will supply power mainly to the
energy metallurgy base and its facilities. It can also supply power to the surrounding villages. 800 workers will be employed from Limpopo for the project. Office and living facilities will be provided by the South Africa Metallurgical Special Industrial Zone Management Limited (“MANCO”). The overall project investment will be $1 billion. The annual production output value at $250 millions. The period for project development is 3 years.
南非能源冶金基地
South Africa Energy Metallurgical Base
年产 60 万吨高碳铬铁厂建设项目
Annual output of 600,000 tons high carbon ferrochrome plant construction project

可行性研究报告
The feasibility study report

香港矿权交易所技术研究院
HK Mining Exchange Company Limited Research Institute of technology
二 0 十四年五月
May 2014
目录/Contents

1 总论Summary

1.1 项目背景Project background
1.2 项目名称Name of project
1.3 项目建设单位及负责人Project undertaker and person in charge
1.4 建设地点Location of construction site
1.5 建设的必要性Necessity of construction
1.6 建设地点的资源Resource of the construction site
1.7 项目建设内容Project construction content

2 市场分析Market analysis

2.1 国际市场The international market
2.2 中国铬铁近期的市场走向
Chinese recent market trends of ferrochrome

3 厂址及建设条件Factory site and construction conditions

3.1 主要原材料条件The main raw material conditions
3.2 交通运输条件The transportation conditions
3.3 供电条件Power supply conditions
3.4 供水Water supply

4 建设方案Construction plan
4.1 Construction scale and product plan

4.2 Production technology and equipment

4.3 Constitution of workshop

4.4 Technological process

4.5 The main equipment selection

4.6 Power supply and distribution system

4.7 Water supply and drainage facilities

4.8 Ventilation and dust removal

4.9 Thermodynamic facilities

5 Energy Evaluation

5.1 Energy supply situation

5.2 Energy consumption situation

5.3 Energy saving measures

5.4 Evaluation

6 Environmental protection

6.1 Factory site and environment status

6.2 Executive environmental quality standard and emission standard

6.3 Main pollution sources and pollutants

6.4 "Three wastes" treatment measures

6.5 Greening

6.6 Estimation of environmental protection
investment

7 劳动安全与消防 Labor safety and fire protection
7.1 职业卫生 Occupational health
7.2 安全生产 Safety production
7.3 消防 Fire protection

8 工厂组织和劳动定员 Factory organization and labor quota
8.1 企业组织 Enterprise organization
8.2 劳动定员 Labor quota
8.3 工资及附加 Salary and addition
8.4 劳动生产率 Labor Productivity
8.5 人员培训 Staff Training

9 工程概况 Project summary

10 投资估算及资金筹措 Investment estimation and financing
10.1 概况 Overview
10.2 概算基本费用组成 Basic cost estimate
10.3 编制依据 Basis of compilation

11 投资构成 The constitute of investment

12 技术经济分析及评价 Techno-economic analysis and evaluation
12.1 概述 Overview
12.2 基础数据 Basic data
12.3 财务评价 Financial evaluation
12.4 评价结论 Evaluation conclusion
Summary of Ferrochrome Plant Project

For the South Africa Energy Metallurgical Base Chrome Plant Project ("project"), the investors will comprise of the South Africa Energy Metallurgical Base Limited ("InvestCo") and other investors from the chrome industry. The plant can produce 600,000 tons of High carbon ferrochrome. The ferrochrome plant ("plant") will be located at the energy metallurgical base of Limpopo Province, with close proximity to the coking coal mines of Universal Coal Plc and Coal of Africa Limited. More than 5 billion tons of chrome resources in around the project site.

The size of the land for the plant to be developed will be 500 hectares. 2 million tons of chrome ores per annum will be required which will be sourced from the surrounding chrome mines. The water will be sourced from the Limpopo river. Water usage will be 6 million m3 per annum. Power will be supply by the self-established power plant of the energy metallurgy base. The ferrochrome will supply mainly to the stainless steel plant of the energy metallurgy base and the export to overseas market. 2600 workers will be employed from Limpopo for the project. Office and living facilities will be provided by the South Africa Metallurgical Special Industrial Zone Management Limited ("MANCO").
The overall project investment will be $380 millions. The annual production output value at $600 millions. The period for the project development is 3 years.
南非能源冶金基地
South Africa Energy Metallurgical Base
年产 60 万吨锰铁厂建设项目
Annual output of 600,000 tons Ferromanganese plant construction project

可行性研究报告
The feasibility study report

香港矿权交易所技术研究院
HK Mining Exchange Company Limited Research Institute of technology
二 0 十四年五月
May 2014
目录/Contents

第一章 总论
Chapter 1 Overview

第一节 项目概况
    Section 1 Project Overview

第二节项目建设的背景和必要性
    Section 2 Background and Necessity of the Project

第三节产品及主要生产设备
    Section 3 Products and Main Production Equipment

第四节项目依据
    Section 4 Project Basis

第五节可行性研究范围
    Section 5 Scope of the Feasibility Study

第六节工程项目组成
    Section 6 Project Composition

第七节总图布置方案
    Section 7 General Layout Plan

第八节环保、卫生、安全、节能
Section 8  Environment Protecting, Sanitation, Safety, Energy Conservation

第九节  企业综合经济效益

Section 9  Enterprise Comprehensive Economic Benefit

第十节  项目总体评价

Section 10  Overall Project Evaluation

第二章  产品用途及市场分析

Chapter 2  Product Usage and Market Analysis

第一节  产品用途

Section 1  Product Usage

第二节  今年铁合金产量

Section 2  Chinese Ferroalloy Production in Recent Years

第三节  今年市场分析

Section 3  Chinese Market Analysis in Recent Year

第四节  市场预测

Section 4  Market Forecast

第五节  市场对策

Section 5  Market Strategies

第三章  工艺设计

Chapter 3  Technology Design

第一节  概述

Section 1  Overview
第二节主要产品工艺路线

Section 2 The Main product Routing

第三节车间布置

Section 3 Workshop Layout

第四节收尘通风

Section 4 Dust Collection and Ventilation

第四章余热利用

Chapter 4 Waste-Heat Utilization

第一节 矿热炉能源利用与节能途径

Section 1 Submerged Arc Furnace Energy Utilization & Energy Saving methods

第二节热管式余热回收器的除尘方法

Section 2 Dust Removal Method of Heat Pipe Waste Heat Recovery

第三节热管换热器型式及配置

Section 3 Type and Configuration of Heat Pipe Heat Exchanger

第五章总图运输

Chapter 5 Plot Plan and Transportation

第一节概述

Section 1 Overview

第二节总平面布局

Section 2 General Layout

第三节厂区配套系统
Section 3 Factory System

第四节 总图消防设计
Section 4 General Layout Design of Fire Protection

第五节 厂区绿化
Section 5 Greening of the Factory Area

第六节 印尼锰矿装卸码头
Section 6 Indonesia Manganese Ore Loading Dock

第六章 给排水
Chapter 6 Water Supply and drainage

第一节 给水
Section 1 Water Supply

第二节 排水
Section 2 Drainage

第七章 电力供应
Chapter 7 Power Supply

第一节 电源
Section 1 Power Source

第二节 用电负荷
Section 2 Power Load

第三节 供电系统
Section 3 Power Supply System

第四节 车间低压配电
Section 4 Workshop Low-Voltage Distribution

第五节 传动及控制

Section 5 Transmission and Control

第六节 装备水平

Section 6 Equipped Level

第七节 电气照明及厂区线路

Section 7 Electric Lighting and Factory Line

第八节 防雷及接地

Section 8 Thunder Protection and Ground Connection

第八章自动化仪表

Chapter 8 Automation Instruments

第一节概述

Section 1 Overview

第二节 控制系统

Section 2 Control System

第三节控制系统功能

Section 3 Function of Control System

第四节 仪表选型

Section 4 Instrument Selection

第五节 主要检测及控制内容

Section 5 Main Detection and Control Content

第六节 技术措施
Section 6  Technical Measures

第九章土建工程

Chapter 9  Civil Engineering

第一节设计原则

Section 1  Design Principles

第二节 设计依据

Section 2  Design Basis

第三节 建筑总面积及建筑设计

Section 3  Total Construction Area and Architectural Design

第四节 结构设计

Section 4  Structure Design

第五节 建筑材料及施工单位

Section 5  Building Material and Construction Organization

第十章环境影响预

Chapter 10  Environmental Influence Forecast

第一节环境影响自测

Section 1  Environmental Influence Self-test

第二节编制依据

Section 2  Compilation Basis

第三节项目污染源及治理措施

Section 3  Project Pollution Sources and Control Measures

第四节 污水处理方案
Section 4  Sewage Treatment Scheme

第五节  固体废弃物影响

Section 5  Influence of Solid Waste

第六节  噪声的处理方案

Section 6  Noise Processing Scheme

第七节  绿化

Section 7  Greening

第八节  环境管理与监测机构

Section 8  Environmental Management and Monitoring Organization

第九节  环保投资估算

Section 9  Investment Estimation of Environmental Protection

第十节  环保措施预期效果

Section 10  Expected Effect of Environmental Measures

第十一章  职业卫生

Chapter 11  Occupational Health

第一节  编制依据及采用标准

Section 1  Compilation Basis and Adoption Standard

第二节  职业卫生防范措施

Section 2  Protection Measures of Occupational Health

第三节  职业卫生教育和管理体制

Section 3  The Occupational Health Education and Management System

第四节  职业卫生投资
Section 4 Occupational Health Investment

Section 5 Effect Prediction of Occupational Health Measure and Evaluation

Chapter 12 Safety Production

Section 1 General Requirement of Safety Production

Section 2 Basic Rules

Section 3 Raw Material

Section 4 Smelting

Section 5 Out of the Furnace

Section 6 Electrical Safety

Section 7 Gas and Liquid Pipeline

Section 8 Hoisting and Transportation
第九节 工业卫生
Section 9 Industrial Hygiene

第十节 安全基本措施
Section 10 Basic Safety Measures

第十一节 防机械伤害及电器事故
Section 11 Mechanical Damage and Electrical Accident Prevention

第十二节 事故的处理、安全教育、管理体制
Section 12 Processing of Accident, Safety Education, Management System

第十三节 安全投资
Section 13 Security Investment

第十四节 安全措施的效果预测
Section 14 Effect Prediction of Safety Measures

第十五节 存在的问题与建议
Section 15 Existing Problems and Suggestions

第十三章 消防
Chapter 13 Fire Protection

第一节 编制依据及采用标准
Section 1 Compilation Basis and Adoption Standard

第二节 火灾隐患分析
Section 2 Fire Hazard Analysis

第三节 消防投资
Section 3 Fire Protection Investment

第十四章能源评估

Chapter 14 Energy Evaluation

第一节 编制依据

Section 1 Compilation Basis

第二节 设计原则

Section 2 Design Principles

第十五章投资估算及资金筹措

Chapter 15 Investment Estimation and Financing

第一节 编制原则及依据

Section 1 Compilation Principle and Basis

第二节 投资估算

Section 2 Investment Estimation

第十六章工作制度及劳动定员

Chapter 16 Working System and Labour Quota

第一节 企业组织

Section 1 Enterprise Organization

第二节 工作制度

Section 2 Working System

第三节 劳动定员

Section 3 Labour Quota

第四节 工资及附加
Section 4  Salary and Addition

第五节 劳动生产率

Section 5  Labour Productivity

第六节 人员培训

Section 6  Personnel Training

第十七章 技术经济

Chapter 17 Technical Economy

第一节 概况

Section 1  Overview

第二节 财务评价基本参数

Section 2  Basic Parameters of Financial Evaluation

第三节 项目资金需求

Section 3  Project Funding Requirements

第四节 财务数据参数

Section 4  Financial Data Parameter

第五节 经济效益计算及分析

Section 5  Economic Benefit Calculation and Analysis

第六节 投资项目财务盈利能力及分析

Section 6  Financial Profitability of Investment Project and Analysis

第七节 不确定性分析

Section 7  Uncertainty Analysis

第八节 综合分析和评价
Section 8 Comprehensive Analysis and Evaluation

第十八章可行性研究结论及建议

Chapter 18 Feasibility Study Conclusions and Recommendations
Summary of Ferromanganese Plant Project

For the South Africa Energy Metallurgical Base Ferromanganese Plant Project (“project”), the investors will comprise of the South Africa Energy Metallurgical Base Limited (“InvestCo”) and other investors from the ferromanganese industry. The plant can produce 600 000 tons of high carbon ferromanganese per annum. The ferromanganese plant (“plant”) will be located at the energy metallurgy base of Limpopo Province, with close proximity to the coking coal mines of Universal Coal Plc and Coal of Africa Limited. More than 8 billion tons of manganese resources in around the project site. The size of the land for the plant to be developed will be 500 hectares. 3 million tons of manganese ores per annum will be required which will be sourced from the surrounding manganese mines. The water will be sourced from the Limpopo river. Water usage will be 6 million m3 per Annum. Power will be supply by the self-established power plant of the energy metallurgy base. The ferromanganese will supply mainly to the stainless steel plant of the energy metallurgical base and export to overseas market. 2300 workers will be employed from Limpopo for the project Office and living
facilities will be provided by the South Africa Metallurgical Industrial Zone Management Limited (“MANCO”). The overall project investment will be $430 millions. The annual production output value at $400 millions. The period for project development is 3 years.
南非能源冶金基地
South Africa Energy Metallurgical Base
年产 30 万吨硅铁厂建设项目
Annual output of 300,000 tons Ferrosilicon plant construction project

可行性研究报告
The feasibility study report

香港矿权交易所技术研究院
HK Mining Exchange Company Limited Research Institute of technology
二 0 十四年五月
May 2014
Summary of Ferrosilicon Plant Project

For the South Africa Energy Metallurgical Base Ferrosilicon Plant Project (“project”), the investors will comprise of the South Africa Energy Metallurgical Base Limited (“InvestCo”) and other investors from the ferrosilicon industry. The plant can produce 300 000 tons of ferrosilicon per annum. The ferrosilicon plant (“plant”) will be located at the energy metallurgy base of Limpopo Province, with close proximity to the coking coal mines of Universal Coal Plc and Coal of Africa Limited. More than 3 billion tons of Silicon resources in around the project site. The size of the land for the plant to be developed will be 300 hectares. 1 million tons of silicon ores per annum will be required which will be sourced from the surrounding silicon mines. The water will be sourced from the Limpopo river. Water usage will be 4 million m3 per Annum. Power will be supply by the self-established power plant of the energy metallurgy base. The ferrosilicon will supply mainly to the stainless steel plant of the energy metallurgical base and export to overseas market. 1800 workers will be employed from Limpopo for the project Office and living facilities will be provided by the South Africa Metallurgical Industrial Zone Management Limited (“MANCO”). The overall project
investment will be $200 millions. The annual production output value at $250 millions. The period for project development is 3 years.
南非能源冶金基地
South Africa Energy Metallurgical Base

年产200万吨冶金生铁厂建设项目
Annual output of 2 Million tons of Pig Iron
Metallurgical Plant construction project

可行性研究报告
The feasibility study report

香港矿权交易所技术研究院
HK Mining Exchange Company Limited Research Institute of technology

二0十四年五月
May 2014
目录/ Contents

第一章 总 论

Chapter 1 Summary

1.1 概述 Overview

1.2 项目提出的背景及建设的必要性

    Project Background and Necessity

1.3 可行性研究的依据和范围

    Basis and Scope of Feasibility Study

1.4 工程基本指导思想和主要原则

    Engineering Basic Guiding Ideology and Main Principles

1.5 原料及燃料供应 Raw Material and Fuel Supply

1.6 工程建设条件 Engineering Construction Conditions

1.6.1 供电 Power Supply

1.6.2 供水 Water Supply

1.7 拟建规模及产品方案

    Proposed Scale and Product Scheme

1.8 炼铁工艺及主要技术特征
Pudding Process and Main Technical Characteristics

1.9 能源利用、环境保护、劳动安全与工业卫生


1.10 消防 Fire Protection

1.11 工作制度和劳动定员

Working System and Labor Quota

1.12 投资估算 Investment Estimation

1.13 经济效益分析 Economic Benefit Analysis

1.14 建设进度 Construction Progress

1.15 问题及建议 Problems and Suggestions

1.16 结论 Conclusions

17 主要经济技术指标 Main Economic and Technical Index

第二章 市场预测和建厂规模

Chapter 2 Market Forecast and Plant Scale

2.1 市场预测 Market Forecast

2.2 建厂规模 Plant Scale

第三章 建厂条件及厂址选择

Chapter 3 Plant Construction Condition and site selection

3.1 厂址选择 Site Selection
3.2 项目区位环境 Project Location Environment
3.3 厂址自然条件 Site Natural Condition
3.3.1 气象条件 Meteorology Condition
3.3.2 工程地质 Engineering Geology
3.3.4 水文地质 Hydro geology
3.4 交通运输 Traffic Transportation
3.5 供电、电讯 Power Supply, telecommunication
3.6 供水 Water Supply

第四章 原燃料的供应
Chapter 4 Original Fuel Supply
4.1 含铁原料的供应 Iron Raw Material Supply
4.2 焦炭的供应 Coke Supply
4.3 熔剂供应 Flux Supply
4.4 高炉煤气供应 Blast Furnace Gas Supply
4.5 高炉炉料平衡 Blast Furnace Burden Balance

第五章 烧结工程
Chapter 5 Sintering Engineering
5.1 概述 Overview
5.1.1 烧结矿需求量 Demand of Sinter
5.1.2 烧结工程设计规模
Sintering Engineering Design Scale

5.1.3 烧结矿质量指标 Sinter Quality Index

5.2 工艺流程 Process Flow

5.3 原料与燃料 Raw Material and Fuel

5.4 烧结车间组成及设备选型

Composition of Sintering Workshop and Equipment Selection

5.4.1 配料室 Ingredients Room

5.4.2 熔剂、燃料破碎室 Flux, Fuel Crushing Chamber

5.4.3 熔剂筛分室 Flux Screening Room

5.4.4 混合室 Mixing Chamber

5.4.5 烧结、冷却及抽风机室

Sintering, Cooling and Exhaust Fan Room

5.4.6 成品破碎室 Finished Product Crushing Chamber

5.4.7 成品筛分室 Finished Product Screening Chamber

第六章 炼铁工程

Chapter 6 Ironmaking Engineering

6.1 概述 Overview

6.2 设计规模、工作制度及产品方案

Design Scale, Working System and Product Scheme

6.3 炼铁工艺技术流程 Ironmaking technology Process
6.4 高炉主要技术指标

Main Technical Indicator of Blast Furnace

6.5 车间平面布置和工艺方案特点

Workshop Layout and Process Characteristics

6.6 槽系统 Groove System

6.7 上料系统 Feeding System

6.8 高炉炉体结构 Blast Furnace Structure

6.9 高炉炉型主要尺寸及有关参数

Type of Blast Furnace, Main Size and Related Parameters

6.10 风口平台及出铁场 Tuyere Platform and Casting House

6.11 高炉送风系统 Blast Furnace Air Supply System

6.12 热风炉系统 Hot Blast Stove System

6.13 煤气系统 Gas System

6.14 渣铁处理系统 Slag Iron Processing System

第七章 煤气发电工程

Chapter 7 Gas Power Generation Engineering

7.1 概述 Overview

7.2 设计原则 Design Principles

7.3 发电量计算 Capacity Calculation

7.4 发电工艺设计 Power Generation Technology Design

7.5 主要设备技术参数
第八章 公用及辅助设施

Chapter 8 Public and Auxiliary facilities

8.1 总图运输 General Transportation
8.1.1 平面布置 General Layout
8.1.2 工厂运输 Factory Shipment
8.1.3 绿化与消防 Greening and Fire Protection
8.2 土建 Civil Construction
8.3 给排水 Water Supply and Drainage
8.4 电气 Electricity
8.5 高炉基础自动化 Basic Automation of Blast Furnace
8.6 电讯 Telecommunication
8.7 采暖通风 Heating and Ventilation
8.8 除尘 Dust Removal
8.9 热力 Heating Power

第九章 环境保护

Chapter 9 Environmental Protection

9.1 设计依据 Design Basis
9.2 工程主要污染源及污染物

Engineering Main Pollution Source and Pollutants
第9章 污染控制措施  Pollution Control Measures

9.4 厂区绿化  Plant Area Greening

9.5 环境管理机构及监测

Environment Management Organization and monitoring

9.6 环保投资  Environmental Protection Investment

9.7 环境影响简要分析

Brief Analysis of Environmental Influence

第十章 劳动安全与卫生

Chapter 10 Labor Safety and Sanitation

10.1 设计依据  Design Basis

10.2 生产不安全因素及职业危害因素

Production Unsafe Factors and Occupational Hazard Factors

10.3 主要防范措施  Main Preventive Measures

10.4 安全卫生投资  Safety and Sanitation Investment

10.5 安全卫生效果预测

Safety and Sanitation Effect Forecast

第十一章 消 防

Chapter 12 Fire Protection

11.1 设计依据  Design Basis
第十二章 节能
Chapter 12 Energy Saving

12.1 概述 Overview

12.2 节能措施 Energy Saving Measures

第十三章 抗震设防
Chapter 13 Seismic Fortification

13.1 编制依据及原则 Compilation Basis and Principles

13.2 设防 Fortification

13.3 抗震设计 Seismic Design

第十四章 工厂组织与劳动定员
Chapter 14 Factory Organization and Labor Quota

第十五章 项目实施计划
Chapter 15 Project Implement Plan

15.1 建设周期规划 Construction Cycle Plan

15.2 各阶段实施进度规划 Implement Schedule Planning in Different Stages
第十六章 投资估算

Chapter 16 Investment Estimation

16.1 编制说明 Compilation Instruction

16.2 编制依据 Compilation Basis

16.3 分项工程估算 Component Project Estimates

16.4 问题说明 Problem Description

第十七章 技术经济评价

Chapter 17 Technical and Economic Evaluation

17.1 基础数据 Basic Data

17.2 财务评价 Financial Evaluation

17.3 结论 Conclusion
Summary of Pig Iron Metallurgy Plant Project

For the South Africa Energy Metallurgical Base Pig Iron Metallurgical Plant Project (“project”), the investors will comprise of the South Africa Energy Metallurgical Base Limited (“InvestCo”) and other investors from the metallurgy industry. The plant can produce 2 million tons of metallurgical pig iron per annum. The Pig Iron Metallurgy Plant (“plant”) will be located at the energy metallurgy base of Limpopo Province, with close proximity to the coking coal mines of Universal Coal Plc and Coal of Africa Limited. More than 5 billion tons of iron resources in around the project site. The size of the land for the plant to be developed will be 600 hectares. 5 million tons of iron ores per annum will be required which will be sourced from the surrounding iron mines. The water will be sourced from the Limpopo river. Water usage will be 4 million m3 per annum. Power will be supply by the self-established power plant of the energy metallurgy base. The metallurgy pig iron will supply mainly to the steel plant of the energy metallurgical base and export to overseas market. 3000 workers will be employed from Limpopo for the project. Office and living facilities will be provided by the South Africa Metallurgical Special Industrial Zone.
Management Limited (‘‘MANCO’’). The overall project investment will be $120 millions. The annual production output value at $450 millions. The period for project development is 3 years.
南非能源冶金基地
South Africa Energy Metallurgical Base
年产 300 万吨钢厂建设项目
Annual output of 3 million tons steel Plant construction project

可行性研究报告
The feasibility study report

香港矿权交易所技术研究院
HK Mining Exchange Company Limited Research Institute of technology
二 0 十四年五月
May 2014
目录/Contents

1 总论General
2 市场分析与预测Market analysis and forecast
3 原料系统Material system
4 烧结设施Sintering facilities
5 竖炉Shaft furnace
6 焦炭Coke
7 炼铁工艺Ironmaking process
8 炼钢工艺Steel making process
9 轧钢工艺Steel rolling process
10 燃气设施Gas facilities
11 氧气、氮气、氩气设施oxygen, nitrogen, argon gas facilities
12 热力设施Thermodynamic facilities
13 采暖、通风、空调及除尘设施Heating, ventilation, air conditioning and dust removal facilities
14 给排水设施Water supply and drainage facilities
15 机修及检化验设施Overhaul and testing facilities
16 供配电设施Power supply and distribution facilities
17 电信设施telecommunications facilities
18 土建工程Civil engineering
19 总图运输Assembly transportation drawing
20 能源及能源评估Energy and energy assessment
21 环境保护与综合利用Environmental protection and comprehensive utilization
22 劳动安全及工业卫生Labor safety and industrial hygiene
23 消防Fire control
24 劳动定员及培训Labor capacity and training
25 投资估算Investment estimation
Summary of Steel Plant Project

For the South Africa Energy Metallurgical Base Steel Plant Project ("project"), the investors will comprise of the South Africa Energy Metallurgical Base Limited ("InvestCo") and other investors from the iron and steel industry. The plant can produce 3 million tons of steel (mainly construction steel) per annum. The steel plant ("plant") will be located at the energy metallurgical base of Limpopo Province, with close proximity to the coking coal mines of Universal Coal Plc and Coal of Africa Limited. There are various steel resources and raw material in around the project site. The size of the land for the plant to be developed will be 600 hectares.

The steel resources and raw material from the nearby area around the project site, The water will be sourced from the Limpopo river. Water usage will be 300 million m³ per annum. Power will be supply by the self-established power plant of the South Africa energy metallurgical base. The steel users mainly from South Africa and other African countries. 2600 workers will be employed from Limpopo for the project. Office and living facilities will be provided by the South Africa Metallurgical
Special Industrial Zone Management Limited ( “MANCO” ). The overall project investment will be $600 millions. The annual production output value at $800 millions. The period for project development is 3 years.
南非能源冶金基地
South Africa Energy Metallurgical Base
年产 100 万吨不锈钢厂建设项目
Annual output of 1 million tons of stainless steel plant construction project

可行性研究报告
The feasibility study report

香港矿权交易所技术研究院
HK Mining Exchange Company Limited Research Institute of technology

二 0 十四年五月
May 2014
Summary of Stainless Steel Plant Project

For the South Africa Energy Metallurgical Base Stainless Steel Plant Project (“project”), the investors will comprise of the South Africa Energy Metallurgical Base Limited (“InvestCo”) and other investors from the stainless steel industry. The plant can produce 1 million tons of stainless steel billet per annum. The stainless steel plant (“plant”) will be located at the energy metallurgy base of Limpopo Province, with close proximity to the coking coal mines of Universal Coal Plc and Coal of Africa Limited. There are extensive mineral resources for the furnace such as chrome, nickel, manganese, iron and others in around the project site. The size of the land for the plant to be developed will be 500 hectares. The input material for the stainless steel furnace will be sourced mainly from the energy metallurgy base and from the surrounding mines. It is required input material 3 million tons per year, the water will be sourced from the Limpopo river. Water usage will be 2 million m³ per annum. Power will be supply by the self-established power plant of the energy metallurgy base. Stainless steel billet products mainly will be export to the international market. 2000 workers will be employed from Limpopo for the project. Office and living facilities will be provided by
South Africa Metallurgical Special Industrial Zone Management Limited ("MANCO"). The overall project investment will be $400 millions. The annual production output value at $2 billons. The period for project development is 3 years.
南非能源冶金基地
South Africa Energy Metallurgical Base
年产500万吨石灰厂建设项目
Annual output of 5 million tons of lime Plant construction project

可行性研究报告
The feasibility study report

香港矿权交易所技术研究院
HK Mining Exchange Company Limited Research Institute of technology
二零一四年五月
May 2014
目录/Contents

第一章 总论
Chapter 1 Summary
1. 项目背景 Project Background
2. 项目概况 Project Profile

第二章 市场预测
Chapter 2 Market Forecast
1. 产品概况及用途 Product Overview and Usage
2. 市场情况及预测 Market Situation and Forecast
3. 产品目标市场分析 Analysis on Product Target Market

第三章 建设规模与产品方案
Chapter 3 Construction Scale and Product Program
1. 建设规模 Construction Scale
2. 产品方案 Product Program

第四章 厂址选择
Chapter 4 Plant Site Choice
1. 自然概况 Natural Condition
2. 社会经济概况 Social and Economic Situation
3. 厂址建设条件  Plant Site Construction Condition

第五章 技术方案、设备方案和工程方案

Chapter 5 Technical, Equipment and Engineering Scheme

1. 技术方案  Technical Scheme

2. 主要设备方案  Main Equipment Scheme

3. 工程方案  Engineering Scheme

第六章 主要原材料、燃料供应

Chapter 6 Main Raw Material and Fuel Supply

1. 原材料来源  Raw Material Sources

2. 项目总平面布置与运输  Project General Layout and Transportation

3. 土建、水、电等公用工程配套条件  Supporting Condition of Civil Engineering, Water, Electricity and other utilities

第七章 总图运输与公用辅助工程

Chapter 7 General Transportation and Public Aided Engineering

1. 总图布置  General Layout Arrangement

2. 场内外运输  Internal and External Transportation

3. 辅助工程  Aided Engineering

4. 变配电室  Variable Transformer Room

第八章 节能节水措施

Chapter 8 Energy-Saving and Water-Saving Measures

1. 概述  Overview

2. 编制依据与原则  Compilation Basis and Principles
3. 能源消耗种类和数量分析  Type and Quality Analysis of Energy Consumption
4. 能源供应状况分析  Analysis of Energy Supply Situation
5. 节能管理办法  Energy Saving Management Measures
6. 节能措施和节能效果分析  Energy Saving Measures and Energy Saving Effect Analysis

第九章  环境影响评价
Chapter 9 Environmental Influence Assessment
1. 环境质量依据  Environmental Quality Basis
2. 环境状况  Environmental Condition
3. 环境治理措施  Environmental Governance Measures
4. 绿化  Greening

第十章  劳动安全卫生与消防
Chapter 10  Safety and Sanitation of Labor and Fire Protection
1. 劳动安全卫生  Safety and Sanitation of Labor
2. 主要安全卫生措施  Main Safety and Sanitation Measures
3. 预期效果及评价  Expected Effect and Evaluation
4. 消防  Fire Protection

第十一章  组织机构与劳动定员
Chapter 11 Organization Structure and Labor Quota
1. 组织机构  Organization Structure
2. 人力资源配置  Human Resources Configuration
3. 员工来源及招聘方案  Employee Source and Recruitment Scheme
4. 员工培训计划  Employee Training Scheme

第十二章 项目实施进度

Chapter 12 Project Implementation Progress

1. 建设工期  Construction Period
2. 实施进度安排  Implementation Scheduling Arrangement
3. 项目实施进度表  Project Implement Schedule sheet
4. 工程项目的招标  Project Bidding

第十三章 投资估算与资金筹措

Chapter 13 Investment Estimation and Capital Raising

1. 投资估算编制依据  Compilation Basis of Investment Estimation
2. 投资估算范围  Investment Estimation Scope
3. 投资估算内容  Investment Estimation Content
4. 项目总投资  Total Project Investment
5. 资金筹措  Capital Raising

第十四章 财务评价

Chapter 14 Financial Evaluation

1. 财务评价依据  Financial Evaluation Basis
2. 销售收入估算  Sales Revenue Estimates
3. 税金和附加估算  Tax and Additional Estimates
4. 总成本及经营成本估算  Total Cost and Operation Cost Estimation
5. 利润及利润分配  Profit and Profit Distribution
第十五章 风险分析

Chapter 15 Risk Analysis

1. 不确定性分析  Uncertainty Analysis

2. 盈亏能力分析  Profit and Loss Ability Analysis

第十六章 结论与建议

Chapter 16 Conclusion and Recommendation

1. 结论  Conclusion

2. 建议  Recommendation
Summary of Lime Plant Project

For the South Africa Energy Metallurgical Base Lime Plant Project ("project"), the investors will comprise of the South Africa Energy Metallurgical Base Limited ("InvestCo") and other investors from the metallurgy industry. The plant can produce 5 million tons of metallurgy lime per annum. The lime plant ("plant") will be located at the energy metallurgical base of Limpopo Province, with close proximity to the coking coal mines of Universal Coal Plc and Coal of Africa Limited. More than 20 billion tons of limestone reserves in around the project site.

The size of the land for the plant to be developed will be 500 hectares. 10 million tons of limestone per annum will be required which will be sourced from the surrounding limestone mines. The water will be sourced from the Limpopo river. Water usage will be 3 million m³ per annum. Power will be supply by the self-established power plant of the energy metallurgy base. Metallurgy lime will supply mainly to the stainless steel plant of the energy metallurgy base and other users of the metallurgy industry in South Africa. 1500 workers will be employed from Limpopo for the project. Office and living facilities will be provided by the South Africa Metallurgical Special Industrial Zone Management
Limited ( "MANCO" ). The overall project investment will be $130 millions. The annual production output value at $200 millions. The period for project development is 3 years.
South Africa Energy Metallurgical Industrial Zone project

Project Investment Planning

(Chinese JV) SA Energy Metallurgical Investment Limited
SA Limpopo Economic Development Agency

Project investment promotion

Hong Kong Mining Exchange Company Limited

Project contacts

Hlamalane Amos Shiburi  +27834571716 Email: Amos.Shiburi@lieda.co.za
Frank Shang  +27827169999 Email: frankshang@bokai.co.za
Vanessa Yam +27823340468  Email: vyam@wingspromo.co.za
Bruce Wong + 8613925051218 Email: huangfu530@foxmail.com
Fang Shaomin + 85225662638 Email: hoimor@netvigator.com